Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2018): 20232950, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471559

RESUMEN

Evolutionary biologists have long been interested in parsing out the roles of genetics, plasticity and their interaction on adaptive trait divergence. Since males and females often have different ecological and reproductive roles, separating how their traits are shaped by interactions between their genes and environment is necessary and important. Here, we disentangle the sex-specific effects of genetic divergence, developmental plasticity, social learning and contextual plasticity on foraging behaviour in Trinidadian guppies (Poecilia reticulata) adapted to high- or low-predation habitats. We reared second-generation siblings from both predation regimes with or without predator chemical cues, and with adult conspecifics from either high- or low-predation habitats. We then quantified their foraging behaviour in water with and without predator chemical cues. We found that high-predation guppies forage more efficiently than low-predation guppies, but this behavioural difference is context-dependent and shaped by different mechanisms in males and females. Higher foraging efficiency in high-predation females is largely genetically determined, and to a smaller extent socially learned from conspecifics. However, in high-predation males, higher foraging efficiency is plastically induced by predator cues during development. Our study demonstrates sex-specific differences in genetic versus plastic responses in foraging behaviour, a trait of significance in organismal fitness and ecosystem dynamics.


Asunto(s)
Poecilia , Aprendizaje Social , Animales , Femenino , Masculino , Ecosistema , Poecilia/fisiología , Conducta Predatoria , Evolución Biológica
2.
J Anim Ecol ; 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38156548

RESUMEN

Behavioural plasticity is a major driver in the early stages of adaptation, but its effects in mediating evolution remain elusive because behavioural plasticity itself can evolve. In this study, we investigated how male Trinidadian guppies (Poecilia reticulata) adapted to different predation regimes diverged in behavioural plasticity of their mating tactic. We reared F2 juveniles of high- or low-predation population origins with different combinations of social and predator cues and assayed their mating behaviour upon sexual maturity. High-predation males learned their mating tactic from conspecific adults as juveniles, while low-predation males did not. High-predation males increased courtship when exposed to chemical predator cues during development; low-predation males decreased courtship in response to immediate chemical predator cues, but only when they were not exposed to such cues during development. Behavioural changes induced by predator cues were associated with developmental plasticity in brain morphology, but changes acquired through social learning were not. We thus show that guppy populations diverged in their response to social and ecological cues during development, and correlational evidence suggests that different cues can shape the same behaviour via different neural mechanisms. Our study demonstrates that behavioural plasticity, both environmentally induced and socially learnt, evolves rapidly and shapes adaptation when organisms colonize ecologically divergent habitats.


La plasticidad conductual es un factor importante en las primeras fases de adaptación, pero se conocen poco sus efectos sobre la evolución porque la plasticidad conductual en sí puede evolucionar. En este estudio, investigamos cómo los machos del guppy de Trinidad (Poecilia reticulata) adaptados a regímenes de depredación diferentes, han divergido en la plasticidad de su táctica de apareamiento. Criamos juveniles provenientes de poblaciones de alta y baja depredación hasta segunda generación (F2) bajo diferentes combinaciones de señales sociales y de depredación, y evaluamos su comportamiento de apareamiento al llegar a la madurez sexual. Los machos de alta depredación aprendieron su táctica de apareamiento de sus conespecíficos adultos, mientras que los machos de baja depredación no. Los machos de alta depredación aumentaron su cortejo al ser expuestos a señales de depredadores durante su desarrollo; mientras que los machos de baja depredación redujeron su cortejo en respuesta a señales inmediatas de depredadores, pero tan solo cuando no fueron expuestos a tales señales durante el desarrollo. Los cambios conductuales observados inducidos por las señales de depredación están asociados con una plasticidad en el desarrollo de la morfología cerebral, pero los cambios adquiridos por aprendizaje social no. En conclusión, demostramos que las poblaciones de guppy han divergido en su respuesta a señales sociales y ecológicas durante su desarrollo, y mostramos evidencia correlativa que sugiere que diferentes tipos de señales pueden influenciar el mismo comportamiento via mecanismos neuronales diferentes. Nuestro estudio muestra que la plasticidad conductual, tanto inducida por el medio ambiente combo aprendida socialmente, evoluciona rápidamente e influencia la adaptación durante la colonización de hábitats ecológicamente divergentes.

3.
Am Nat ; 202(4): 413-432, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792920

RESUMEN

AbstractClassic theory for density-dependent selection for delayed maturation requires that a population be regulated through some combination of adult fecundity and/or juvenile survival. We tested whether those demographic conditions were met in four experimental populations of Trinidadian guppies in which delayed maturation of males evolved when the densities of those populations became high. We used monthly mark-recapture data to examine population dynamics and demography in these populations. Three of the four populations displayed clear evidence of regulation. In all four populations, monthly adult survival rates were independent of biomass density or actually increased with increased biomass density. Juvenile recruitment, which is a combination of adult fecundity and juvenile survival, decreased as biomass density increased in all four populations. Demography showed marked seasonality, with greater survival and higher recruitment in the dry season than the wet season. Population regulation via juvenile recruitment supports the hypothesis that density-dependent selection was responsible for the evolution of delayed maturity in males. This body of work represents one of the few complete tests of density-dependent selection theory.


Asunto(s)
Poecilia , Animales , Masculino , Poecilia/fisiología , Dinámica Poblacional , Biomasa , Fertilidad , Estaciones del Año
4.
Biol Lett ; 19(1): 20220443, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36693425

RESUMEN

Eco-evolutionary theory has brought an interest in the rapid evolution of functional traits. Among them, diet is an important determinant of ecosystem structure, affecting food web dynamics and nutrient cycling. However, it is largely unknown whether diet, or diet preference, has a hereditary basis and can evolve on contemporary timescales. Here, we study the diet preferences of Trinidadian guppies Poecilia reticulata collected from directly below an introduction site of fish transplanted from a high-predation environment into a low predation site where their densities and competition increased. Behavioural assays on F2 common garden descendants of the ancestral and derived populations showed that diet preference has rapidly evolved in the introduced population in only 12 years (approx. 36 generations). Specifically, we show that the preference for high-quality food generally found in high-predation guppies is lost in the newly derived low-predation population, who show an inertia toward the first encountered food. This result is predicted by theory stating that organisms should evolve less selective diets under higher competition. Demonstrating that diet preference can show rapid and adaptive evolution is important to our understanding of eco-evolutionary feedbacks and the role of evolution in ecosystem dynamics.


Asunto(s)
Ecosistema , Poecilia , Animales , Evolución Biológica , Dieta , Conducta Predatoria
5.
Oecologia ; 195(4): 1053-1069, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33738525

RESUMEN

The ecological consequences of biological range extensions reflect the interplay between the functional characteristics of the newly arrived species and their recipient ecosystems. Teasing apart the relative contribution of each component is difficult because most colonization events are studied retrospectively, i.e., after a species became established and its consequences apparent. We conducted a prospective experiment to study the ecosystem consequences of a consumer introduction, using whole-stream metabolism as our integrator of ecosystem activity. In four Trinidadian streams, we extended the range of a native fish, the guppy (Poecilia reticulata), by introducing it over barrier waterfalls that historically excluded it from these upper reaches. To assess the context dependence of these range extensions, we thinned the riparian forest canopy on two of these streams to increase benthic algal biomass and productivity. Guppy's range extension into upper stream reaches significantly impacted stream metabolism but the effects depended upon the specific stream into which they had been introduced. Generally, increases in guppy biomass caused an increase in gross primary production (GPP) and community respiration (CR). The effects guppies had on GPP were similar to those induced by increased light level and were larger in strength than the effects stream stage had on CR. These results, combined with results from prior experiments, contribute to our growing understanding of how consumers impact stream ecosystem function when they expand their range into novel habitats. Further study will reveal whether local adaptation, known to occur rapidly in these guppy populations, modifies the ecological consequences of this species introduction.


Asunto(s)
Poecilia , Animales , Ecosistema , Estudios Prospectivos , Estudios Retrospectivos , Ríos
6.
Am Nat ; 195(6): 964-985, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32469660

RESUMEN

Understanding how nutrients flow through food webs is central in ecosystem ecology. Tracer addition experiments are powerful tools to reconstruct nutrient flows by adding an isotopically enriched element into an ecosystem and tracking its fate through time. Historically, the design and analysis of tracer studies have varied widely, ranging from descriptive studies to modeling approaches of varying complexity. Increasingly, isotope tracer data are being used to compare ecosystems and analyze experimental manipulations. Currently, a formal statistical framework for analyzing such experiments is lacking, making it impossible to calculate the estimation errors associated with the model fit, the interdependence of compartments, and the uncertainty in the diet of consumers. In this article we develop a method based on Bayesian hidden Markov models and apply it to the analysis of N15-NH4+ tracer additions in two Trinidadian streams in which light was experimentally manipulated. Through this case study, we illustrate how to estimate N fluxes between ecosystem compartments, turnover rates of N within those compartments, and the associated uncertainty. We also show how the method can be used to compare alternative models of food web structure, calculate the error around derived parameters, and make statistical comparisons between sites or treatments.


Asunto(s)
Ecosistema , Cadena Alimentaria , Modelos Estadísticos , Nitrógeno/metabolismo , Compuestos de Amonio/química , Animales , Luz , Cadenas de Markov , Isótopos de Nitrógeno , Plantas/metabolismo , Ríos , Trinidad y Tobago , Agua/química
7.
Ecol Lett ; 22(4): 634-644, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30714671

RESUMEN

Predicting population colonisations requires understanding how spatio-temporal changes in density affect dispersal. Density can inform on fitness prospects, acting as a cue for either habitat quality, or competition over resources. However, when escaping competition, high local density should only increase emigration if lower-density patches are available elsewhere. Few empirical studies on dispersal have considered the effects of density at the local and landscape scale simultaneously. To explore this, we analyze 5 years of individual-based data from an experimental introduction of wild guppies Poecilia reticulata. Natal dispersal showed a decrease in local density dependence as density at the landscape level increased. Landscape density did not affect dispersal among adults, but local density-dependent dispersal switched from negative (conspecific attraction) to positive (conspecific avoidance), as the colonisation progressed. This study demonstrates that densities at various scales interact to determine dispersal, and suggests that dispersal trade-offs differ across life stages.


Asunto(s)
Migración Animal , Ecosistema , Animales , Densidad de Población , Dinámica Poblacional
8.
Evol Appl ; 11(9): 1512-1517, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30344623

RESUMEN

Many harmless organisms gain a survival advantage by mimicking venomous species. This is the case of the endangered smooth snake (Coronella austriaca), which mimics venomous vipers. Although this may protect the smooth snake against most of its natural predators, it may render them at greater risk of mortality from humans, who are more inclined to kill species, such as vipers, that they consider dangerous. This may cause an evolutionary mismatch, whereby humans may counteract the natural advantage of mimicry. We explore this possibility of evaluating the willingness of humans to kill smooth snakes versus the adder (Vipera berus), as well as their ability to discern them in the Åland Islands. Our results show that, even when respondents did not wish to kill the smooth snakes, these were often mistaken for adders, which they were willing to kill. Altogether, viper mimicry brought about a 2.3-fold increase in the likelihood of smooth snakes being killed upon human encounter. These results open up the possibility that naturally selected mimicry can pose a threat to endangered snakes in human-influenced habitats. We discuss the potential for this to be the case, and highlight the importance of protecting entire mimicry complexes, rather than single species, when the endangered species is a mimic.

9.
Proc Biol Sci ; 285(1884)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068673

RESUMEN

The evolution of cooperation and social behaviour is often studied in isolation from the ecology of organisms. Yet, the selective environment under which individuals evolve is much more complex in nature, consisting of ecological and abiotic interactions in addition to social ones. Here, we measured the life-history costs of cooperative chemical defence in a gregarious social herbivore, Diprion pini pine sawfly larvae, and how these costs vary under different ecological conditions. We ran a rearing experiment where we manipulated diet (resin content) and attack intensity by repeatedly harassing larvae to produce a chemical defence. We show that forcing individuals to allocate more to cooperative defence (high attack intensity) incurred a clear cost by decreasing individual survival and potency of chemical defence. Cooperative behaviour and the magnitude of its costs were further shaped by host plant quality. The number of individuals participating in group defence, immune responses and female growth decreased on a high resin diet under high attack intensity. We also found some benefits of cheating: non-defending males had higher growth rates across treatments. Taken together, these results suggest that ecological interactions can shape the adaptive value of cooperative behaviour and maintain variation in the frequency of cooperation and cheating.


Asunto(s)
Conducta Animal/fisiología , Conducta Cooperativa , Dieta , Himenópteros/fisiología , Animales , Femenino , Himenópteros/crecimiento & desarrollo , Inmunidad Innata , Larva/crecimiento & desarrollo , Larva/fisiología , Masculino , Pinus sylvestris , Conducta Predatoria , Resinas de Plantas/química , Conducta Social
10.
Am Nat ; 189(2): 196-200, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28107058

RESUMEN

Theory predicts that the sex linkage of sexually selected traits can influence the direction and rate of evolution and should itself evolve in response to sex-specific selection. Some studies have found intraspecific differences in sex linkage associated with differences in selection pressures, but we know nothing about how fast these differences can evolve. Here we show that introduced guppy populations showing rapid evolution of male coloration also show rapid changes in sex-linkage patterns. A comparison, using hormonal manipulations in females, of introduced populations of different ages suggests a consistent increase of autosomal or X-linked coloration 2 years after introduction from high- to low-predation environments. Twenty years after introduction, populations already show the same pattern of coloration inheritance typical of natural low-predation populations in similar habitats. These results highlight that the contemporary evolution of sexually selected traits ought to be studied in concert with contemporary changes in linkage relationships.


Asunto(s)
Ligamiento Genético , Pigmentación/genética , Poecilia , Animales , Evolución Biológica , Color , Ambiente , Femenino , Humanos , Masculino , Conducta Predatoria
11.
Ecology ; 97(11): 3154-3166, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27870030

RESUMEN

Decades of ecological study have demonstrated the importance of top-down and bottom-up controls on food webs, yet few studies within this context have quantified the magnitude of energy and material fluxes at the whole-ecosystem scale. We examined top-down and bottom-up effects on food web fluxes using a field experiment that manipulated the presence of a consumer, the Trinidadian guppy Poecilia reticulata, and the production of basal resources by thinning the riparian forest canopy to increase incident light. To gauge the effects of these reach-scale manipulations on food web fluxes, we used a nitrogen (15 N) stable isotope tracer to compare basal resource treatments (thinned canopy vs. control) and consumer treatments (guppy introduction vs. control). The thinned canopy stream had higher primary production than the natural canopy control, leading to increased N fluxes to invertebrates that feed on benthic biofilms (grazers), fine benthic organic matter (collector-gatherers), and organic particles suspended in the water column (filter feeders). Stream reaches with guppies also had higher primary productivity and higher N fluxes to grazers and filter feeders. In contrast, N fluxes to collector-gatherers were reduced in guppy introduction reaches relative to upstream controls. N fluxes to leaf-shredding invertebrates, predatory invertebrates, and the other fish species present (Hart's killifish, Anablepsoides hartii) did not differ across light or guppy treatments, suggesting that effects on detritus-based linkages and upper trophic levels were not as strong. Effect sizes of guppy and canopy treatments on N flux rates were similar for most taxa, though guppy effects were the strongest for filter feeding invertebrates while canopy effects were the strongest for collector-gatherer invertebrates. Combined, these results extend previous knowledge about top-down and bottom-up controls on ecosystems by providing experimental, reach-scale evidence that both pathways can act simultaneously and have equally strong influence on nutrient fluxes from inorganic pools through primary consumers.


Asunto(s)
Peces/fisiología , Cadena Alimentaria , Luz , Ríos , Animales , Biomasa , Dinámica Poblacional , Trinidad y Tobago , Clima Tropical , Agua/química
12.
Evol Appl ; 9(7): 879-91, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27468306

RESUMEN

Genetic rescue, an increase in population growth owing to the infusion of new alleles, can aid the persistence of small populations. Its use as a management tool is limited by a lack of empirical data geared toward predicting effects of gene flow on local adaptation and demography. Experimental translocations provide an ideal opportunity to monitor the demographic consequences of gene flow. In this study we take advantage of two experimental introductions of Trinidadian guppies to test the effects of gene flow on downstream native populations. We individually marked guppies from the native populations to monitor population dynamics for 3 months before and 26 months after gene flow. We genotyped all individuals caught during the first 17 months at microsatellite loci to classify individuals by their genetic ancestry: native, immigrant, F1 hybrid, F2 hybrid, or backcross. Our study documents a combination of demographic and genetic rescue over multiple generations under fully natural conditions. Within both recipient populations, we found substantial and long-term increases in population size that could be attributed to high survival and recruitment caused by immigration and gene flow from the introduction sites. Our results suggest that low levels of gene flow, even from a divergent ecotype, can provide a substantial demographic boost to small populations, which may allow them to withstand environmental stochasticity.

13.
Proc Biol Sci ; 282(1813): 20151244, 2015 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-26290077

RESUMEN

Evolutionary analyses of population translocations (experimental or accidental) have been important in demonstrating speed of evolution because they subject organisms to abrupt environmental changes that create an episode of selection. However, the strength of selection in such studies is rarely measured, limiting our understanding of the evolutionary process. This contrasts with long-term, mark-recapture studies of unmanipulated populations that measure selection directly, yet rarely reveal evolutionary change. Here, we present a study of experimental evolution of male colour in Trinidadian guppies where we tracked both evolutionary change and individual-based measures of selection. Guppies were translocated from a predator-rich to a low-predation environment within the same stream system. We used a combination of common garden experiments and monthly sampling of individuals to measure the phenotypic and genetic divergence of male coloration between ancestral and derived fish. Results show rapid evolutionary increases in orange coloration in both populations (1 year or three generations), replicating the results of previous studies. Unlike previous studies, we linked this evolution to an individual-based analysis of selection. By quantifying individual reproductive success and survival, we show, for the first time, that males with more orange and black pigment have higher reproductive success, but males with more black pigment also have higher risk of mortality. The net effect of selection is thus an advantage of orange but not black coloration, as reflected in the evolutionary response. This highlights the importance of considering all components of fitness when understanding the evolution of sexually selected traits in the wild.


Asunto(s)
Evolución Biológica , Preferencia en el Apareamiento Animal , Poecilia/fisiología , Selección Genética , Animales , Color , Aptitud Genética , Longevidad , Masculino , Fenotipo , Poecilia/genética
14.
Proc Biol Sci ; 282(1806): 20150202, 2015 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-25854889

RESUMEN

Large conspicuous eyespots on butterfly wings have been shown to deter predators. This has been traditionally explained by mimicry of vertebrate eyes, but recently the classic eye-mimicry hypothesis has been challenged. It is proposed that the conspicuousness of the eyespot, not mimicry, is what causes aversion due to sensory biases, neophobia or sensory overloads. We conducted an experiment to directly test whether the eye-mimicry or the conspicuousness hypothesis better explain eyespot efficacy. We used great tits (Parus major) as model predator, and tested their reaction towards animated images on a computer display. Birds were tested against images of butterflies without eyespots, with natural-looking eyespots, and manipulated spots with the same contrast but reduced resemblance to an eye, as well as images of predators (owls) with and without eyes. We found that mimetic eyespots were as effective as true eyes of owls and more efficient in eliciting an aversive response than modified, less mimetic but equally contrasting eyespots. We conclude that the eye-mimicry hypothesis explains our results better than the conspicuousness hypothesis and is thus likely to be an important mechanism behind the evolution of butterfly eyespots.


Asunto(s)
Mimetismo Biológico , Mariposas Diurnas/fisiología , Pájaros Cantores/fisiología , Percepción Visual , Alas de Animales/fisiología , Animales , Ojo , Pigmentación
15.
Evolution ; 68(8): 2343-56, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24816221

RESUMEN

There are many theoretical and empirical studies explaining variation in offspring sex ratio but relatively few that explain variation in adult sex ratio. Adult sex ratios are important because biased sex ratios can be a driver of sexual selection and will reduce effective population size, affecting population persistence and shapes how populations respond to natural selection. Previous work on guppies (Poecilia reticulata) gives mixed results, usually showing a female-biased adult sex ratio. However, a detailed analysis showed that this bias varied dramatically throughout a year and with no consistent sex bias. We used a mark-recapture approach to examine the origin and consistency of female-biased sex ratio in four replicated introductions. We show that female-biased sex ratio arises predictably and is a consequence of higher male mortality and longer female life spans with little effect of offspring sex ratio. Inconsistencies with previous studies are likely due to sampling methods and sampling design, which should be less of an issue with mark-recapture techniques. Together with other long-term mark-recapture studies, our study suggests that bias in offspring sex ratio rarely contributes to adult sex ratio in vertebrates. Rather, sex differences in adult survival rates and longevity determine vertebrate adult sex ratio.


Asunto(s)
Poecilia/genética , Razón de Masculinidad , Animales , Femenino , Longevidad , Masculino
16.
Evolution ; 68(2): 587-94, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24168320

RESUMEN

Fluctuating environments are expected to select for individuals that have highest geometric fitness over the experienced environments. This leads to the prediction that genetically determined environmental robustness in fitness, and average fitness across environments should be positively genetically correlated to fitness in fluctuating environments. Because quantitative genetic experiments resolving these predictions are missing, we used a full-sib, half-sib breeding design to estimate genetic variance for egg-to-adult viability in Drosophila melanogaster exposed to two constant or fluctuating temperatures that were above the species' optimum temperature, during development. Viability in two constant environments (25°C or 30°C) was used to estimate breeding values for environmental robustness of viability (i.e., reaction norm slope) and overall viability (reaction norm elevation). These breeding values were regressed against breeding values of viability at two different fluctuating temperatures (with a mean of 25°C or 30°C). Our results based on genetic correlations show that average egg-to-adult viability across different constant thermal environments, and not the environmental robustness, was the most important factor for explaining the fitness in fluctuating thermal environments. Our results suggest that the role of environmental robustness in adapting to fluctuating environments might be smaller than anticipated.


Asunto(s)
Drosophila melanogaster/genética , Interacción Gen-Ambiente , Selección Genética , Animales , Cruzamiento , Drosophila melanogaster/crecimiento & desarrollo , Temperatura
17.
Proc Biol Sci ; 280(1763): 20131116, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23740786

RESUMEN

In semelparous populations, dormant germ banks (e.g. seeds) have been proposed as important in maintaining genotypes that are adaptive at different times in fluctuating environments. Such hidden storage of genetic diversity need not be exclusive to dormant banks. Genotype diversity may be preserved in many iteroparous animals through sperm-storage mechanisms in females. This allows males to reproduce posthumously and increase the effective sizes of seemingly female-biased populations. Although long-term sperm storage has been demonstrated in many organisms, the understanding of its importance in the wild is very poor. We here show the prevalence of male posthumous reproduction in wild Trinidadian guppies, through the combination of mark-recapture and pedigree analyses of a multigenerational individual-based dataset. A significant proportion of the reproductive population consisted of dead males, who could conceive up to 10 months after death (the maximum allowed by the length of the dataset), which is more than twice the estimated generation time. Demographic analysis shows that the fecundity of dead males can play an important role in population growth and selection.


Asunto(s)
Poecilia/fisiología , Dinámica Poblacional , Reproducción/fisiología , Selección Genética , Animales , Femenino , Masculino , Poecilia/genética , Poecilia/crecimiento & desarrollo , Reproducción/genética , Espermatozoides/fisiología , Trinidad y Tobago
18.
Am Nat ; 181(1): 25-38, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23234843

RESUMEN

Recent study of feedbacks between ecological and evolutionary processes has renewed interest in population regulation and density-dependent selection because they represent black-box descriptions of these feedbacks. The roles of population regulation and density-dependent selection in life-history evolution have received a significant amount of theoretical attention, but there are few empirical examples demonstrating their importance. We address this challenge in natural populations of the Trinidadian guppy (Poecilia reticulata) that differ in their predation regimes. First, we tested whether natural populations of guppies are regulated by density dependence and quantified in which phases of the life cycle the effects of density are important. We found that guppies from low-predation (LP) environments are tightly regulated and that the density-dependent responses disproportionately affected some size classes. Second, we tested whether there are differences in density-dependent selection between guppies from LP or high-predation (HP) environments. We found that the fitness of HP guppies is more sensitive to the depressant effects of density than the fitness of LP guppies. Finally, we used an evolutionary invasion analysis to show that, depending on the effect of density on survival of the HP phenotype, this greater sensitivity of the HP phenotype to density can partially explain the evolution of the LP phenotype. We discuss the relevance of these findings to the study of feedbacks between ecology and evolution.


Asunto(s)
Evolución Biológica , Cadena Alimentaria , Poecilia/fisiología , Adaptación Fisiológica , Animales , Femenino , Aptitud Genética , Masculino , Modelos Biológicos , Poecilia/genética , Densidad de Población , Dinámica Poblacional , Selección Genética , Trinidad y Tobago
19.
Am Nat ; 180(2): 167-85, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22766929

RESUMEN

Ecological and evolutionary processes may interact on the same timescale, but we are just beginning to understand how. Several studies have examined the net effects of adaptive evolution on ecosystem properties. However, we do not know whether these effects are confined to direct interactions or whether they propagate further through indirect ecological pathways. Even less well understood is how the combination of direct and indirect ecological effects of the phenotype promotes or inhibits evolutionary change. We coupled mesocosm experiments and ecosystem modeling to evaluate the ecological effects of local adaptation in Trinidadian guppies (Poecilia reticulata). The experiments show that guppies adapted to life with and without predators alter the ecosystem directly through differences in diet. The ecosystem model reveals that the small total indirect effect of the phenotype observed in the experiments is likely a combination of several large indirect effects that act in opposing directions. The model further suggests that these indirect effects can reverse the direction of selection that direct effects alone exert back on phenotypic variation. We conclude that phenotypic divergence can have major effects deep in the web of indirect ecological interactions and that even small total indirect effects can radically change the dynamics of adaptation.


Asunto(s)
Evolución Biológica , Ecosistema , Poecilia/genética , Adaptación Biológica , Animales , Modelos Biológicos , Fenotipo
20.
Evolution ; 66(3): 912-918, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22380450

RESUMEN

Evolutionary theory predicts that the sex linkage of sexually selected traits can influence the direction and rate of evolutionary change, and also itself be subject to selection. Theory abounds on how sex-specific selection, mate choice, or other phenomena should favor different types of sex-linked inheritance, yet evidence in nature remains limited. Here, we use hormone assays in Trinidadian guppies to explore the extent to which linkage of male coloration differs among populations adapted to varying predation regimes. Results show there is consistently higher degree of X- and autosomal linkage in body coloration among populations adapted to low-predation environments. More strikingly, analyses of an introduced population of guppies from a high- to a low-predation environment suggest that this difference can change in 50 years or less.


Asunto(s)
Ligamiento Genético , Pigmentación/genética , Poecilia/genética , Selección Genética , Caracteres Sexuales , Animales , Femenino , Masculino , Conducta Predatoria , Cromosomas Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...